Hplc Method Development and Its Validation for Simultaneous Estimation of Tolperisone Hydrochoride and Diclofenac Sodium in Combined Tablet Dosage Form

Jain Dipesh*, Jain Pallavi** Department of Quality assurance, B.N. College of Pharmacy, Udaipur (Raj.) <u>dipeshjain76652@yahoo.com</u>*

Abstract: Multi-ingredient formulation is regularly used in the management of various ailments in order to avoid the intake of large number of doses. Tolperisone Hydrochoride and Diclofenac Sodium is one of such combination useful in the treatment of muscular pain. In the proposed project, an attempt has been made to develop and validate a HPLC method and to apply the method for determination of Tolperisone Hydrochoride and Diclofenac Sodium in tablet dosage form. A HPLC method was developed and validated successfully for simultaneous estimation of Tolperisone Hydrochoride and Diclofenac Sodium. The method utilizes a BDS hypersil C_{18} , 250mm × 4.6mm, 5 μ (particle size), Thermo scientific with mobile phase of 0.05 M KH₂PO₄ Buffer : Acetonitrile: TEA (60: 40: 0.1) (%v/v) (pH 3.5 by ophosphoric acid) with the flow rate of 1 ml/min and UV detection at 215nm. The method was validated as per guidelines. Linearity ICH was observed over concentration range of 22.5 ppm-67.5ppm for TOL and 5 ppm-15ppm for DICLO. The accuracy of the proposed method was determined by recovery studies and found to be 100.16- 100.48 % and 99.99-100.12 % for TOL and DICLO respectively. The proposed method was extended for estimation of TOL and DICLO in tablet formulation and it was found to be well within the limit. acceptance This **RP-HPLC** method for simultaneous estimation of TOL and DICLO was found to be linear, accurate, precise, robust and rugged. Hence it can be used for routine analysis of TOL and DICLO in tablets.

Key words: Tolperisone Hydrochoride, Diclofenac Sodium, RP-HPLC, Method development and Validation.

I. Introduction

Method validation is the process used to confirm that the analytical procedure employed for a specific test is suitable for its intended use. Results from method validation can be used to judge the quality, reliability and consistency of analytical results¹. The objective of validation of an analytical procedure is to demonstrate that it is suitable for its intended purpose. A tabular summation of the characteristics applicable to identification, control of impurities and assay procedures is included. Other analytical procedures may be considered in future additions to this document².

TOL is 2-methyl-1-(4-methylphenyl)-3-(1-piperidyl)propan-1-one Hydrochloride Typically, tolperisone is indicated in the treatment of acute muscle spasms in back pain and spasticity in neurological diseases³. Easily soluble in Methanol and ethanol, slightly soluble in acetone, almost insoluble in benzene or ether⁴. Melting point of TOL is 181 to 183°C⁵. Being, centrally acting muscle relaxant, tolperisone acts at the level of spinal cord by blocking sodium channels and calcium channels. Tolperisone exerts its spinal reflex inhibitory action predominantly via a pre synaptic inhibition of the transmitter release from the primary afferent endings via a combined action on voltagegated sodium and calcium channels. Tolperisone increases the blood supply to skeletal muscles this action is noteworthy since a muscle contracture may compress the small blood vessels and induce an ischemia leading to release of pain stimulating compounds⁶. Tolperisone is intensively metabolised by the liver and the kidneys⁷. It may cause excessive sweating, urticaria or erythema. Also may

lead to GI upset with abdominal paon, nausea, vomiting, diarrhea, flatulence or dryness of mouth⁸. Tolperisone Hydrochloride is official in Japanese pharmacopoeia⁹.

Diclofenac is Nonsteroidal anti-inflammatory drugs used to relieve the inflammation, swelling, stiffness, and joint pain associated with rheumatoid arthritis, osteoarthritis¹⁰. Chemically is called Sodium 2-[(2,6-dichlorophenyl)amino]phenyl]acetate. Sparingly soluble in water, freely soluble in methanol, soluble in ethanol (96 per cent), slightly soluble in acetone¹¹.

Gastrointestinal experiences including: abdominal pain, constipation, diarrhea, dyspepsia, flatulence, gross bleeding/perforation, heartburn, nausea, GI ulcers (gastric/duodenal) and vomiting¹²⁻¹⁴. Diclofenac Sodium is official in Indian Pharmacopoeia (IP) ¹⁵, British Pharmacopoeia (BP)¹⁶ and United States Pharmacopoeia (USP)¹⁷.

II. Material and Method

Chemicals and Reagents:- Tolperisone Hydrochoride and Diclofenac Sodium were obtained from Molecule lab, Ahmedabad, India. Tolperisone Hydrochoride and Diclofenac Sodium combined dosage form tablets were purchased from local market. Tolperisone Hydrochoride (Potency 99.5 %), Diclofenac Sodium (Potency 99.7 %) and Acetonitrile, Methanol, Water, Ortho Phosphoric acid all were taken of HPLC Grade.

Instrumentation:- HPLC: Shimadu LC-2010c HT, Liquid Chromatograph: LC-20AT,UV-Visible, Detector :-ShimadzuUV-1601 PC, Column :- BDS hypersil C₁₈, 250mm \times 4.6mm, 5µ(particle size), Thermo scientific, Digital pH meter (EUTEC1100), Ultra Sonicator-Spincotech Pvt. Ltd, Durasil-Pipettes of 1, 2 and 10 ml capacity and Borosil-Volumetric flasks of 10,25,50,100 mL capacity were used. (All glassware was previously calibrated). Measuring cylinder of 100 ml capacity and Hamilton 25 µl syringe were used.

Chromatographic conditions:-

PARAMETER	CONDITION
Column	Thermoscientific, BDS hypersil C_{18} , 250 mm × 4.60 mm, 5µ
Flow rate	1.0 ml/min.
Mobile Phase	0.05 M KH ₂ PO ₄ Buffer : Acetonitrile: TEA (60: 40: 0.1)
	(%v/v) (pH 3.5 by o-phosphoric acid)
Detection	215 nm
Injection Volume	20 µl
Runtime	10 Minute
Diluent	Mobile Phase

Table 1: Chromatographic conditions

Diluent: Mobile Phase

Preparation of Mobile Phase

0.05 M KH₂PO₄ Buffer: Acetonirtrie : TEA (60: 40: 0.1 %v/v) pH 3.0 adjust with O – Phosphoric acid: - 680 mg KH₂PO₄ in 100ml water and than add 0.1 ml tri ethyl amine and than adjust pH at 3.0 using o-phosphoric acid. Mix this 60ml with 40ml Acetonitrile. Sonicate for 30 minute and filter through 0.20 μ size membrane filter.

Preparation of standard and stock solution of TOL: Accurately weighed quantity of TOL 45 mg was transferred into 100 ml volumetric flask, add 50 ml of diluent and it was then sonicated for 10 min and final volume of solution was made up to mark with diluent to get stock solution containing 450 μ g/ml of TOL in 100 ml volumetric flask this solution used as stock solution.

Preparation of standard and stock solution of DICLO: Accurately weighed quantity of DICLO 10 mg was transferred into 100 ml volumetric flask, add 50 ml of diluents and It was then sonicated for 10 min and final volume of solutions was made up to mark with diluent to get stock solution containing 10 μ g/ml of DICLO in 100 ml volumetric flask This solution used as a stock solution.

Preparation of sample solution: Twenty tablets were weighed. The powder from twenty tablets were collected and weighed. The Powder equivalent to 45 mg of TOL and 10 mg of DICLO was transferred to a 100 ml volumetric flask and dissolved in mobile phase. The solution was ultrasonicated for 30 min and filtered through 0.20 micron membrane filter to obtain concentration about 450 µg/ml TOL and 100 µg/ml DICLO respectively. And a solution of 45 µg/ml of TOL and 10 µg/ml of DICLO solution was prepared by diluting 1 ml of sample stock solution with diluents in 10 ml volumetric flask up to the mark label the both flask.

III. Results & Discussion

The detection wavelength was chosen at 215 nm for Tolperisone Hydrochoride and Diclofenac Sodium in tablet dosage form has better absorption and sensitivity at this wavelength. However, to achieve the better separation of Tolperisone Hydrochoride and Diclofenac Sodium in the present combination, the mobile phase chromatogram was shown in Fig. 1(a), (b) and (c), which illustrate the separation of both active ingredients in this system. The isocratic HPLC method was adopted to analyze both components in a single run. Figure (b) is final optimize condition with good resolution.

System suitability and system precision:

System suitability and system precision was daily performed during entire validation of this method. The results of system suitability and system precision were presented in table 1.

Linearity and calibration curve:

The linearity parameter was performed to ensure that the test results are directly proportional to the concentration of analyte sample. The correlation coefficient was found to be 0.99 to 1.00. A linear relationship was found for all components. The results of linearity, limit of detection and limit of quantification were presented in table 2 and 3. Calibration carves of Tolperisone Hydrochoride and Diclofenac Sodium show in Fig. 4 and 5.respectively, and Overlain chromatograph show in fig. 6.

Specificity:

There was no interference from sample placebo and peak purity of Tolperisone Hydrochoride and Diclofenac Sodium were 0.999 and 1.000. It showed that developed analytical method was specific for the analysis of Tolperisone Hydrochoride and Diclofenac Sodium in tablet dosage form.

Method precision:

The precision of the method was established by carrying out the analysis of the standard analyte (n=6) using the proposed method. The %RSD found within 2% showed that the method was precise. The results obtained were presented in table 4.

Method accuracy:

This parameter was performed to determine the closeness of test results with that of the true value which is expressed as % recovery. This study was performed at 3 different levels 50, 100 and 150. The amount of Tolperisone Hydrochoride and Diclofenac Sodium recovered was calculated. The results of recovery studies were presented in table 5 and 6 respectively.

Method robustness:

Robustness of the method was determined by small deliberate changes in pH, flow rate, Organic phase ratio of mobile phase and column oven temperature. The content of the drug was not adversely affected by these changes as evident from the low value of relative standard deviation indicating that the method was robust. The results of robustness were presented in table 7.

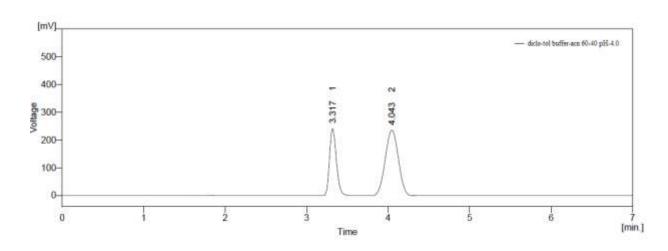


Figure 1: Buffer (phosphate) : Acetonitrile (60:40 v/v), pH: 4.0

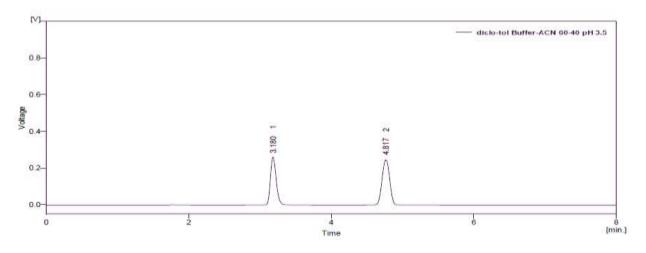


Figure 2: Buffer (phosphate) : Acetonitrile (60:40 v/v), pH: 3.5

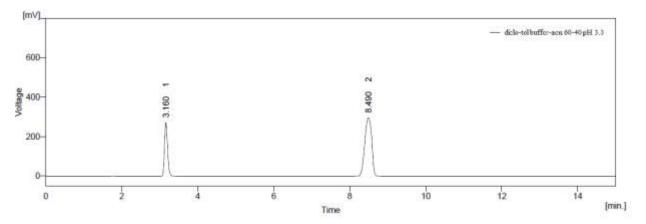


Figure 3: Buffer (phosphate): Acetonitrile (60:40 v/v), pH: 3.0

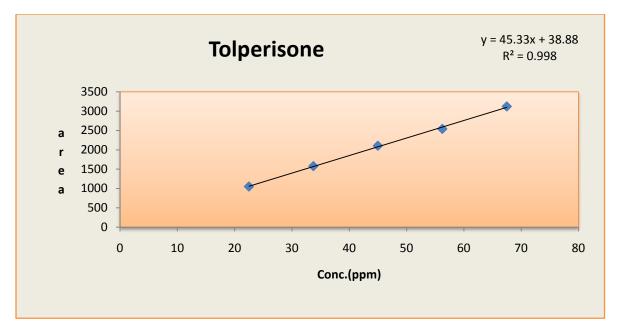


Figure 4: Calibration Curve of TOL

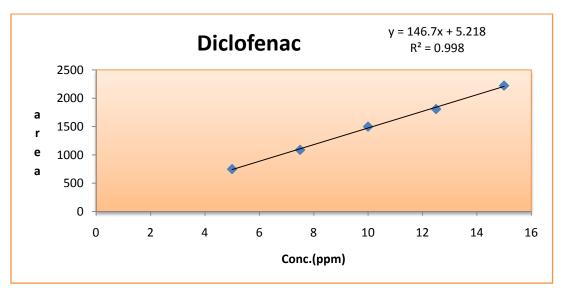


Figure 5: Calibration Curve of DICLO

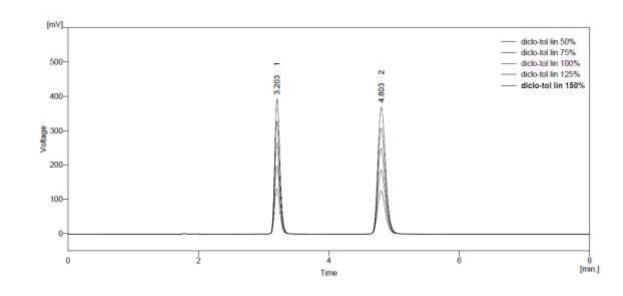


Figure 6: Overlay Chromatogram for Calibration curve of TOL and DICLO.

Table 2: System suitability parameter of TOL and DICLO

Parameter	TOL	DICLO
Retention Time	4.81 ± 0.10	3.21 ± 0.10
Resolution	8.452	-
Asymmetry Factor	1.386	1.415
Theoretical Plates	7232	7057
% RSD	1.53	1.14

Sr. No.	% Concentration with respect to test concentration	Concentration ppm(µg/ml)	Peak Area mean*
1	50	22.5	1051.358
2	75	33.75	1578.451
3	100	45	2104.344
4	125	56.25	2539.979

5	150	67.5	3120.696
Correlation		0.998	
Coefficient			
	Regression	Y = 45.33 x	- 38.88
	Equation		

*Average of Five determination

Table 4: Calibration data for standard DILCO

Sr. No.	% Concentration with respect to test concentration	Concentration ppm(µg/ml)	Peak Area mean*
1	50	5	748.4
2	75	7.5	1087.589
3	100	10	1497.915
4	125	12.5	1808.289

5	150	15	2222.767	
	Correlation Coefficient	0.998		
	Regression Equation	Y = 146.7 x	+ 5.218	

*Average of Five determination

	TOL				DILCO			
Co	Peak	SD	%	Co	Peak	SD	%	
nc.	Area		RS	nc.	Area		RS	
рр	DD Mea D		D	pp	pp Mea I			
m	n*			m	n *			
45	1509.	13.	0.9	10	2117.	22.	1.0	
	025	63	03	10	245	83	78	

Table 5: Repeatability for TOL and DICLO

* Average of six determination

Conc. Level (%)	Amount added (ppm)	Amount Found (ppm)	% Recovery	% Recovery mean*	S.D.	%RSD
	36	36.60	101.67			
	36	36.25	100.71			0.74
80	36	35.87	99.64	100.48	0.74	
80	36	35.92	99.78			
	36	36.29	100.82			
	36	36.10	100.29			
	45	44.53	98.96		1.15	1.15
	45	44.62	99.16			
100	45	45.50	101.12	100.16		
	45	45.84	101.87			
	45	44.80	99.56			

Table 6: Accuracy data for TOL

International Journal for Rapid Research in Engineering Technology and Applied Science ISSN (Online): 2455-4723 Vol 1 Issue 1 December 2015

	45	45.12	100.26			
	54	53.75	99.55	100.29	0.64	0.64
	54	54.44	100.81			
120	54	54.22	100.41			
120	54	53.80	99.63			
	54	54.63	101.17			
	54	54.08	100.15			

*Average of three determination

Conc. Level (%)	Amount added (ppm)	Amount Found (ppm)	% Recovery	% Recovery mean*	S.D.	% R SD
	8	8.11	101.44			
	8	8.04	100.51			
80	8	7.98	99.76	100.03	0.89	0.89
80	8	7.96	99.59			
	8	7.90	98.80			
	8	8.00	100.11			
	10	9.88	98.80			
100	10	9.90	99.01	99.99	99.99 1.13	1.13
	10	10.09	100.95			
	10	10.16	101.66			

International Journal for Rapid Research in Engineering Technology and Applied Science ISSN (Online): 2455-4723 Vol 1 Issue 1 December 2015

	10	9.94	99.40			
	10	10.01	100.10			
120	12	11.92	99.40	100.12	0.627	0.62
	12	12.08	100.66			
	12	12.02	100.22			
	12	11.93	99.48			
	12	12.11	100.97			
	12	12.00	100.00			

*Average of three determination

Table 8: Results of Robustness parameters

CONDITION	PEAK AREA MEAN *		SD		%R.S.D.			
CONDITION	TOL	DICLO	TOL	DICLO	TOL	DICLO		
Change in the Mobile Phase Composition(± 2 ml organic Phase)								
Change in the + 2ml organic phase $(62:38 v/v)$	2108.847	1503.088	19.71	11.16	0.93	0.74		
No Change in the organic phase (60:40 v/v)	2109.955	1505.592	29.12	14.68	1.38	0.97		
Change in the - 2 ml organic phase (58:38 v/v)	2104.442	1498.321	25.48	17.61	1.21	1.17		
Change pH(±0.2 unit)								
Change in the + 0.2 unit pH (3.7 pH)	2105.783	1500.83	22.25	13.12	1.05	0.87		
No Change in the pH (3.5 pH)	2110.033	1503.846	34.86	21.99	1.65	1.46		

International Journal for Rapid Research in Engineering Technology and Applied Science ISSN (Online): 2455-4723 Vol 1 Issue 1 December 2015

Change in the -0.2 unit pH (3.3 pH)	2103.477	1497.611	36.80	25.86	1.74	1.72		
Change Flow rate (±0.2 ml/min)								
Change in the + 0.2ml/min F.R.(1.2 ml/min)	2013.093	1435.577	28.51	16.70	1.41	1.16		
No Change in the F.R. (1.0 ml/min)	2121.261	1511.364	14.12	9.19	0.66	0.60		
Change in the - 0.2ml/min F.R.(0.8 ml/min)	2223.554	1583.566	22.80	14.91	1.02	0.94		

*Average of three determination

IV. Conclusion

The novel RP- HPLC methods has been developed for the simultaneous estimation of Tolperisone hydrochloride and Diclofenac sodium in combined tablet dosage is simple, precise, specific, accurate, quick reliable and reproducible. The method gave good resolution for both the drugs with a short analysis time below 6 minutes. The method was completely validated showing satisfactory data for all the method validation parameters tested. The results indicate that the described method can be used for analysis of the compound. The amount found in formulation well agreed with label claim in present of excipients. Thus, the reported method is considerable importance and has great industrial applicability for quality control and analysis of tolperisone hydrochloride and diclofeanc sodium in combined tablet dosage from. This method can also be used for the routine analysis of this combination in other pharmaceutical formulation.

Acknowledgement

I would like to thank my GOD and undefined power which help me to complete it. All which have cooperation to complete it.

Reference:

- [1] Kalra Kapil, "Validation of Analytical Procedures", "Dev Bhoomi Institute of Pharmacy and Research, Dehradun, Uttarakhand, India.
- International Conference on Harmonization (ICH) (2005, Nov.), Harmonised tripartite guideline Q2(R1), Validation of analytical procedures: Text and methodology.
- [3] Novartis King Pharmaceuticals, factor (diclofenac epolamine) topical pathch prescribing information, Bristol, TN, 2009 Oct.
- [4] Balazs D, Janos L, Szabolcs S, et al. Identification of metabolic pathways involved in the biotransformation of tolperisone by human microsomal enzymes. Drug Metab Dispos. 2003;31:631–636
- [5] B ae JW, Kim MJ, Park YS, et al. Considerable interindividual variation in the pharmacokinetics of tolperisone HCI. Int J Clin Pharmacol Therap. 2007;45:110–113
- [6] Pal K, Sandor F, Laszlo F, et al. Tolperisone-type drugs inhibit spinal reflexes voltage-gated sodium and calcium channels. JPET. 2005;315:1237–1246.
- [7] Toperisone hydrochloride drug review," Journal of the association of physicians of India" Volume 58 2010
- [8] Akiko S, Motoko H, Mitsuo T, et al. Antinociceptive effects of sodium channelblocking agents on acute pain in mice. J Pharmacol Sci. 2004;95:181–188

- [9] Japanese Pharmacopoeia JP15, The ministry of health, labour and welfare, prefectural office in Japan, 2006, 1190.
- [10] O'Connor KM, Corrigan OI. 2001. Preparation and characterization of a range of diclofenac salts. Int J Pharm 226:163–179.
- [11] http://bp2012.infostar.com.cn/Bp2012.aspx?a=quer y&title=%22Diclofenac+Sodium%22&tab=az+index&l=D&xh=1
- [12] Novartis, Voltaren-XR (diclofenac sodium extended relese tablets) prescribing information, East hanover NJ 2006 jan
- [13] Novartis cataflam (diclofenac potassium immediate-release tablets) prescribing information, , East hanover NJ 2005 jul
- [14] Novartis King Pharmaceuticals, factor (diclofenac epolamine) topical pathch prescribing information, Bristol, TN, 2009 Oct.
- [15] Indian Pharmacopoeia, The Indian Pharmacopoeia Commission, Ghaziabad, 2007, Vol. - 2, 402-403.
- [16] British Pharmacopoeia, British Pharmacopoeia Commission, 2009, Vol. – 1 & 2, 1893-1894.
- [17] United state Pharmacopoeia 30 National formulary 24, United State Pharmacopoeia Convention, 2007, 1922.