

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

A Technique to Interpret the Software Reusability using Software

Metrics

Amitgupta5997@gmail.com
1
, Pankaj.dashore@sims-indore.com

2

Abstract: As in today’s world, time is playing
a crucial role while developing the

applications. Reusing something will

definitely increase the productivity of the

application that is need to be developed.

Reusing existing components not only save the

time but also the efforts made by the

development team and also the use of

environment and other resources. It also

helps us to reduce the cost of the product. In

this paper, we are discussing the way through

which we can able to identify whether the

object oriented code of applications can be

reuse in the future or not. We will also discuss

the object oriented matrices that helps us to

identify the reusable code.

I. INTRODUCTION

Reusability is the best direction to increase

developing productivity and maintainability of

application. One must first search for good tested

software component and reusable developed

application software by one programmer can be

shown useful for others components also. This is

proving that code specifics to application

requirements can also be reused in developing

projects related with same requirements. The

main aim of this paper proposed a way for

reusable module. A process takes source code

(Object Oriented Code) as input that will helped

to take the decision approximately that the given

code in reusable or not. This tool will help to

identify the reusability of any object oriented

code, which helps in various organizations and

industries that they can choose the most reusable

module from existing number of modules. The

reusability is one of the most important factors to

improve the productivity and quality of the

product with a very less cost. This chapter

includes the motivation, problem definition,

approaches and scope of the report. It describes

the basic theme of the report and provides

overall idea about research.

II. LITERATURE SURVEY

The measurement of the reusability will help

developers to control the current level of the

reuse and providing the metrics to identify one

of the important quality property reusability.

Software complexity metrics reveal internal

characteristics of a module, collection of

modules, or object-oriented programs [21].

Studies indicate that complex modules cost the

most to develop and have the highest rates of

failure [10]. McCabe and Halstead developed the

two most widely known complexity metrics:

Amit Gupta
1
, Dr. Pankaj Dashore

2.

M-Tech Scholar, Sanghvi Innovative Academy,Indore
1

Professor, Sanghvi Innovative Academy, Indore2

mailto:Amitgupta5997@gmail.com
mailto:Pankaj.dashore@sims-indore.com

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

 The McCabe Cyclomatic Complexity metric

links the number of logical branches

(decisions) in a module to the difficulty of

programming [22].McCabe melds a graph

theory approach with software engineering:

if you represent the logic structure of a

module using a flowchart (a graph) andcount

the regions of the graph caused by program

flow statements (do-while, if-then-else), the

numberof regions in the graph corresponds to

the complexity of the program. If the number

of regions,V(G), exceeds 10, the module

may have too many changes of control.

 Halstead’s Software Science metrics link
studies on human cognitive ability to

software complexity [23]. Halstead’s
approach parses the program or problem

statement into tokens and classifies the

tokens into operators (verbs, functions,

procedures)and operands (nouns, variables,

files). Equations based on these tokens give

program complexity interms of a variety of

indicators including estimated effort,

program volume, and size. Not surprisingly,

basic software engineering principles address

many of the aspects of software that might

make software reusable. This particularly

applies to those qualities that make software

maintainable.

Another factor affecting whether a

programmer will choose to use an existing

component in a new situation depends on

how quickly the programmers can adapt

what the component does and how to use it.

Program understanding methods address this

problem. These methods attempt to present

the important information about a component

to the user in a way the user can quickly

assess [24]. For example, recognizing that

expert programmers organize the important

information about a component into mental

templates, Lin and Clancy developed a visual

template containing this same information.

Their study shows that by using a standard

layout, a potential reuse can quickly scan the

important aspects of a component, such as

text descriptions, pseudo code, illustrations,

and implementation information [25].

Understanding how good reusable software

works not only helps the programmer learn

how to write good reusable software, it

increases the chances the programmer will

use more of what already exists. The

discussion of what makes software reusable

has taken place for a long time. In 1984

Matsumo to stressed qualities such as

generality, definiteness (the degree of clarity

or understandability), transferability

(portability), and retrievability as the major

characteristics leading to the reusability of a

component [25].

One reason why we find it so hard to develop

reusability metrics comes from the fact that no

one completely understands “design for reuse”
issues [27]. Given that humans often do not

agree on what makes a component reusable,

obtaining an equation that quantifies the concept

offers a significant challenge. To put it simply,

we need to define reusability before we can

quantify it.

To illustrate this point, Woodfield, Embley, and

Scottconducted an experiment where 51

developers had toassess the reusability of an

Abstract Data Type (ADT)in 21 different

situations [28]. They found developersuntrained

in reuse did poorly; the developers based

theirdecisions on unimportant factors such as

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

size of theADT and ignored important factors

such as the effortneeded to modify the ADT. As

a result, the studyrecommends developing tools

and education that canhelp developers assess

components for reuse and suggests reusability

metric based on the effort needed tomodify a

component as reflected by the number orpercent

of operations to add or modify.

The following methods primarily use objective,

quantifiable attributes of software as the basis

for reusability metric. Most use module-oriented

attributes, butthe methods to interpret the

attributes vary greatly [10].

According to Prieto-Diaz and Freeman

In their landmark paper,Prieto-Diaz and Freeman

identify five program attributesand associated

metrics for evaluating reusability [29].Their

process model encourages white-box reuse

andconsists of finding candidate reusable

modules, evaluating each, deciding which

module the programmer canmodify the easiest,

then adapting the module. In thismodel they

identify four module-oriented metrics and afifth

metric used to modify the first four. The

followinglist shows the five metrics and gives a

description ofeach:

1. Program Size. Reuse depends on a small

modulesize, as indicated by lines of source

code.

2. Program Structure. Reuse depends on a

simpleprogram structure as indicated by fewer

links toother modules (low coupling) and low

Cyclomatic complexity [29].

3. Program Documentation. Reuse depends on

excellent documentation as indicated by a

subjectiveoverall rating on a scale of 1 to 10.

4. Programming Language. Reuse depends on

programming language to the extent that it

helps toreuse a module written in the same

programming language [29]. If a reusable

module in the same language does not exist,

the degree of similaritybetween the target

language and the one used in themodule

affects the difficulty of modifying themodule

to meet the new requirement.

5. Reuse Experience. The experience of the

reuser inthe programming language and in the

applicationdomain affects the previous

metrics because everyprogrammer views a

module from their own perspective. For

example, programmers will have different

views of what makes a “small”
module,depending on their background. This

fifth metricserves to modify the values of the

other metrics [29].

According to Selby

To derive measures of reusability, we must look

atinstances where reuse succeeded and try to

determinewhy. Selby provides a statistical study

of reusabilitycharacteristics of software using

data from a NASAsoftware environment [16].

NASA used the productionenvironment to

develop ground support software inFORTRAN

for controlling unmanned spacecraft. Thestudy

provides statistical evidence based on

nonparametric analysis-of-variance on the

contributions of awide range of code

characteristics. The study validatedmost of the

findings listed below at the .05 level of

confidence, showing that most modules reused

withoutmodification [16]:

 Have a smaller size, generally less than 140

sourcestatements.

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

 Have simple interfaces.

 Have few calls to other modules (low

coupling).

 Have more calls to low-level system and

utility functions.

 Have fewer input-output parameters.

 Have less human interaction (user interface).

 Have good documentation, as shown by the

comment-to-source statement ratio.

 Have experienced few design changes during

implementation.

 Took less effort to design and build.

 Have more assignment statements than logic

statements per source statement.

 Do not necessarily have low code

complexity.

 Do not depend on project size.

According to Chen and Lee

Although Selby’s evidence did not find a

statistically significant correlation between

module complexity and reusability, other studies

show such a link. In one example [30], Chen and

Lee developed about 130 reusable C++

components and used these components in a

controlled experiment to relate the level of reuse

in a program to software productivity and quality

[30]. In contrast to Selby, who worked with

professional programmers, Chen and Lee’s
experiment involved 19 students who had to

design and implement a small database system.

The software metrics collected included the

Halstead size, program volume, program level,

estimated difficulty, and effort. They also

included McCabe complexity and the Dunsmore

live variable and variable span metrics [14].

They found that the lowerthe values for these

complexity metrics, the higher the programmer

productivity.

According to Caldiera and Basili

Caldiera and Basili [31] state that basic

reusabilityattributes depend on the qualities of

correctness, readability, testability, ease of

modification, and performance, but they

acknowledge we cannot directly measureor

predict most of these attributes. Therefore, the

paperproposes four candidate measures of

reusability basedlargely on the McCabe and

Halstead metrics. Thismodule-oriented approach

has an advantage in that toolscan automatically

calculate all of the four metrics and arrange of

values for each [31]:

1. Halstead’s program volume. A module

mustcontain enough function to justify the

costs ofretrieving and integrating it, but not so

much function as to jeopardize quality.

2. McCabe’s Cyclomatic complexity. Like

Halstead’svolume, the acceptable values for
the McCabemetric must balance cost and

quality.

3. Regularity. Regularity measures the

readability andthe non-redundancy of a

module implementation bycomparing the

actual versus estimated values ofHalstead’s
two length metrics. A clearly writtenmodule

will have an actual Halstead length close toits

theoretical Halstead length.

4. Reuse frequency. Reuse frequency indicates

theproven usefulness of a module and comes

from thenumber of static calls to the module.

The paper continues by calculating these four

metricsfor software in nine example systems,

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

and noting thatthe four metrics show a high

degree of statistical independence.

III. OVERVIEW OF OBJECT ORIENTED

MATRICES

The metrics estimate the OO concepts such as:

methods; classes; coupling; and inheritance etc

[20]. The metrics focus on internal object

structure that reflects the complexity of each

individual entity and on external complexity that

measures the interactions among entities. The

metrics compute computational complexity more

or less the efficiency of an algorithm and the use

of machine resources, as well as psychosomatic

complexity issues that influence the ability of a

programmer to alter, build, and realize software

and the end user to effectively use the software

[20].

The traditional metrics have been widely used,

they are well understood by researchers and

practitioners, and their relationships to software

quality attributes have been validated. Table 2.2

presents an overview of the metrics proposed by

the SATC for object-oriented systems. The

SATC supports the continued use of traditional

metrics, but within the structures and confines of

object-oriented systems. The first three metrics

in Table 2.2 are examples of how traditional

metrics can be applied to the object-oriented

structure of methods instead of functions or

procedures.

The evaluation of the utility of a metric as a

quantitative measure of software quality must

relate to the SATC Software Quality Model.

Table 2.2 Metrics for Object-Oriented Systems

[20]The object-oriented metric criteria, therefore,

are the evaluation of the following areas:

 Reusability/Application specific - Is the

design application specific?

 Efficiency of the implementation of the

design - Were the constructs efficiently

designed?

 Testability/Maintenance - Does the structure

enhance testing?

 Understandability/Usability - Does the

 design increase the psychological

complexity?

 Complexity - Could the constructs be used

more effectively to decrease the architectural

complexity?

Traditional Metrics

In an OO system, traditional metrics are

normally applied to the methods that comprise

the operations of a class. A method is an element

of an object that operates on data members in

METRIC OBJECT-ORIENTED

CC (Cyclomatic complexity) Mthod

SIZE (Lines of Code) Method

COM (Comment percentage) Method

WMC (Weighted methods per class) Class/Method

RFC (Response for a class) Class/Message

LCOM (Lack of cohesion of methods) Class/Cohesion

CBO (Coupling between objects) Coupling

DIT (Depth of inheritance tree) Inheritance

NOC (Number of children) Inheritance

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

response to messages and is defined as part of

the declaration of a class. Two traditional

metrics are discussed here: Cyclomatic

complexity and line counts (size).

Metric 1: Cyclomatic Complexity (CC)

The Cyclomatic complexity (McCabe) is used to

evaluate the application of an algorithm. A

method with a low Cyclomatic complexity

means that resolutions are deferred through

message passing, not that the methods are not

complex. Because of inheritance, CC cannot be

used to evaluate the complexity of a class, but

for individual methods can be combined with

other measures to evaluate the complexity of the

class [22].

Metric 2: Line Count - Size/Documentation

All physical lines of code, the number of

statements and the number comment lines.

However, since size limitations are based on

ease of understanding by the developers and

maintainers, routines of large size will

always pose a higher risk in attributes such

as Understandability, Reusability, and

Maintainability [26]. This metric can be used

to evaluate all the attributes, but most often

is a measures Reusability, Understandability,

and Maintainability.

Metric 3: Comment Percentage

The comment percentage is calculated by the

total number of comments divided by the total

lines of code less the number of blank lines.

Since comments assist developers and

maintainers, this metric is used to evaluate the

attributes of Understandability, Reusability,

and Maintainability.

Object-Oriented Specific Metrics

Many different metrics have been proposed for

object-oriented systems. The object-oriented

metrics that were chosen measure principle

structures that, if they are improperly designed,

negatively affect the design and code quality

attributes [23].The selected object-oriented

metrics are primarily applied to the concepts of

classes, coupling, and inheritance. For some of

the object-oriented metrics discussed here,

multiple definitions are given. As with

traditional metrics, researchers and practitioners

have not reached a common definition or

counting methodology. In some cases, the

counting method for a metric is determined by

the software analysis package being used to

collect the metrics.

Class

A class is a collection of data members and

member functions. A class is used to create an

Object. Objects of a class share a common

structure and a common behavior by the set of

methods. Following class metrics measure the

complexity of a class using the class’s methods,
messages and cohesion.

Methods

In an object-oriented system, traditional metrics

are generally applied to the methods that contain

the process of a class. A method is an element of

a class that operates on data members of the

class. Two traditional metrics are discussed here:

Cyclomatic complexity and line counts (size).

Metric 4: Weighted Methods per Class

(WMC)

The WMC is a count of the methods

implemented within a class [22]. The second

measurement is difficult to implement since due

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

to inheritance not all methods are assessable

within the class hierarchy. Time and effort

required to develop and maintain the class is

predicted by the number of methods and the

complexity of the methods involved. Classes

with large numbers of methods limiting the

possibility of reuse as these are more application

specific, [21].

Cohesion

Cohesion is the degree to which methods within

a class are related to one another and work

together to provide well-bounded behavior.

Effective object-oriented designs maximize

cohesion since it promotes encapsulation [21].

The third class metric investigates cohesion.

Metric 5: Lack of Cohesion of Methods

(LCOM)

LCOM calculates the degree of resemblance of

methods by variables or attributes. Any assess of

separateness of methods helps to determine

flaws in the design of classes. There are

following ways of measuring cohesion [31]:

1. Estimate for each element in a class to find the

percentage of the methods use that data field.

Lower the percentages will results greater

cohesion of data and methods in the class.

2. If same attributes were operated then methods

are more similar. Than count disjoint sets

produced from the connection of the sets of

attributes used by the methods. Greater the

cohesion results good class subdivision.

Complexity is increased when lack of

cohesion or low cohesion increases

complexity, thereby increasing the likelihood

of errors during the development process [31].

This metric evaluates the design

implementation as well as reusability.

Coupling

Coupling is a computation of the strength of

relationship established by a connection from

one entity to another. Classes / objects are

coupled in three ways:

1. The objects are said to be coupled, then a

message is passed between objects.

2. Classes are coupled when methods declared in

one class use methods or attributes of the

other classes.

3. Inheritance introduces significant tight

coupling between parent class and their child

class.

The next object-oriented metric measures

coupling strength.

Metric 6: Coupling Between Object Classes

(CBO)

CBO is a count of the number of other classes to

which a class is coupled. It is measured by

counting the number of distinct non-inheritance

related class hierarchies on which a class

depends [20]. The larger the number of couples,

the higher the sensitivity to changes in other

parts of the design and therefore maintenance is

more difficult. Strong coupling complicates a

system since a module is harder to understand

change or correct by itself if it is inter-related

with other modules [21]. Complexity can be

reduced by designing systems with the weakest

possible coupling between modules.

Inheritance

Using Inheritance we can reuse or derive the

properties of base class in one or more than one

derived classes. This permits programmers to

use again previously defined objects including

variables, functions and operators. By reducing

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

the number of operations and operators,

inheritance decreases complexity, but this

abstraction of objects can make maintenance and

design difficult. Following metrics used to

measure the amount of inheritance are the depth

and breadth of the inheritance hierarchy.

Metric 7: Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance

hierarchy is the maximum length from the class

node to the root of the tree and is measured by

the number of ancestor classes. The deeper a

class is within the hierarchy, the greater the

number methods it is likely to inherit making it

more complex to predict its behavior. Deeper

trees constitute greater design complexity, since

more methods and classes are involved, but the

greater the potential for reuse of inherited

methods. A support metric for DIT is the number

of methods inherited (NMI). This metric

primarily evaluates reuse but also relates to

understandability and testability.

Metric 8: Number of Children (NOC)

The number of children is the number of

immediate subclasses subordinate to a class in

the hierarchy. It is an indicator of the potential

influence a class can have on the design and on

the system [21]. The greater the number of

children, the greater the likelihood of improper

abstraction of the parent and may be a case of

misuse of sub-classing. But the greater the

number of children, the greater the reuse since

inheritance is a form of reuse. If a class has a

large number of children, it may require more

testing of the methods of that class, thus increase

the testing time. NOC, therefore, primarily

evaluates testability and design.

IV. CONCLUSION

The purpose of this thesis is to finding the

approach and way to calculate reusability of

object oriented programs. Reusability is one of

the quality attribute and it is of prime important

in object oriented software development. As

developer’s productivity leads to be increased by
reusability, it reduces development cost as well

as reduces time to market too. The work

presented in this thesis can be effectively used to

calculate the reusability of any object oriented

software module.

V. REFERENCES

[1] Software Reuse Plans BringPaybacks,”
Computeworld, Vol. 27, KO. 49, pp.73-76.

Anthes, Gary I I.,

 [2] J.W. Bailey and V.R. Basili. “A s meta-

model for oftware development resource

expenditures”. Proc. Fifth Int. Conf.
Software Engineering.Pages107-116. 1981

[3] Norman Fenton. “Software Metrics A
Rigorous Approach” .Chapman & Hall,
London, 1991

[4] Software Reusability Vol II Applications and

Experiences, Addison Wesley, 1989.

[5]

 http://www.indiawebdevelopers.com/arti

cles/reusability.asp

[6] James M. Bieman “Deriving Measures of
Software Reuse in Object Oriented Systems”
Springer-Verlag 1992 pp 79-82.

[7] Chris Luer, “Assessing Module Reusability”,

First International Workshop on Assessment

International Journal for Rapid Research in Engineering Technology & Applied Science

ISSN (Online): 2455-4723

Volume II Issue XI December-2016

Paper Id: 2016/IJRRETAS/12/2016/15611

of Contemporary Modularization techniques

(ACoM'07).

[8] Dandashi F., “A Method for Assessing the
Reusability of Object-oriented Code Using a

Validated Set of Automated Measurements”,
ACM 2002 pp 997-1003.

[9] Young Lee and Kai H. Chang, “Reusability
and Maintainability Metrics for object

oriented software”, ACM 2002 pp 88 – 94.

[10] Jeffrey S. Poulin “Measuring Software
Reusability”, IEEE 1994 pp 126- 138.

[11]

 http://en.wikipedia.org/wiki/Coupling_(c

omputer science)

[12] B. W. Boehm. “Software Engineering
Economics” .Prenntice Hall, Englewood
Cliffs, NJ, 1981.

[13] Shyam R. Chidamber, Chris F. Kemerer,

“A metrics suit for object oriented
design”,1993

[14] S.D. Conte, H.E. Dunsmore, and V.Y.

Shen, “Software Engineering Metrics and

Models”. Benjamin"Cummings, Menlo Park,
California 1986.

[15] M. Burgin. H. K. Lee. N. Debnath,

“Software Technological Roles, Usability,
and Reusability, Dept. of Math”. California
Univ., Los Angeles, 2004.

[16] Richard W. Selby. “Quantitative studies

of software reuse”. In Ted J. Biggersta and
Alan J. Perlis, editors,

