
 International Journal for Rapid Research in Engineering Technology & Applied Science

 Vol.4 Issue 3 March 2018

 ISSN (Online): 2455-4723

Paper ID: 2018/IJRRETAS/3/2018/37621

Implementation of Big-Data Application Using the

MapReduce Framework

Niesh Jaiswal, Prof. Mayank Bhatt

M.Tech Scholar, Assistant Prof. & HOD

Department of Computer Science & Engineering, LNCT Indore, India

nilesh.jaiswal124@gmail.com*, maynkbhatt27@gmail.com**

ABSTRACT:

In cloud computing, data is moved to a

remotely located cloud server. Cloud server

faithfully stores the data and return back to

the owner whenever needed. Data and

computation integrity and security are

major concerns for users of cloud

computing facilities. Today's clouds

typically place centralized, universal trust in

all the cloud's nodes.Hadoop is founded on

MapReduce, which is among the most

popular programming items for huge

knowledge analysis in a parallel computing

environment. In this paper, we reward a

particular efficiency analysis,

characterization, and evaluation of Hadoop

MapReduce WordCount utility.

Keywords: Performance analysis, cloud

computing, Hadoop WordCount.

I. INTRODUCTION

Yesteryear decade features seen your rise

regarding cloud calculating [1], an

arrangement where businesses in addition to

individual users utilize hardware, storage

space, and software program of 3rd party

companies named cloud providers rather than

running their very own computing commercial

infrastructure. Cloud calculating offers

customers the illusion of needing infinite

calculating resources, of which they can use all

the or less than they have to have, without

being forced to concern themselves with

exactly how those resources are offered or

maintained [2].

The derivation of big knowledge is indistinct

and there are a lot of definitions on huge data.

For examples, Matt Aslett outlined massive

knowledge as “tremendous data is now

virtually universally understood to refer to the

recognition of larger business intelligence

through storing, processing, and examining

data that was previously ignored because of

problem of normal data management applied

sciences” [5]. Recently, the term of giant data

has got a brilliant momentum from

governments, industry and research

communities. In [6], significant information is

outlined as a term that encompasses using

tactics to capture, approach, analyze and

visualize potentially significant datasets in a

cheap timeframe now not obtainable to usual

IT applied sciences. The figure below would

throw more light to your understanding.

Figure 1. Flow of Map Reduce

II. Map Reduce Problem

mailto:nilesh.jaiswal124@gmail.com

 International Journal for Rapid Research in Engineering Technology & Applied Science

 Vol.4 Issue 3 March 2018

 ISSN (Online): 2455-4723

Paper ID: 2018/IJRRETAS/3/2018/37621

Word count is typical examples where Hadoop

map reduce developers start their hands on.

This sample map reduce is intended to count

the no of occurrences of each word in the

provided input files. Below line show about

Map Reduce Problem.

 Map()
o Process a key/value pair to

generate intermediate

key/value pairs

 Reduce()
o Merge all intermediate values

associated with the same key

Users implement interface of two primary

methods:

Map: (key1, val1) → (key2, val2)

 Reduce: (key2, [val2]) → [val3]
 Map - clause group-by (for Key) of an

aggregate function of SQL

 Reduce - aggregate function (e.g.,

average) that is computed over all the

rows with the same group-by attribute

(key).

The point to be noted here is that first

the mapper class executes completely

on the entire data set splitting the

words and forming the initial key

value pairs. Only after this entire

process is completed the reducer starts.

Say if we have a total of 10 lines in our

input files combined together, first the

10 lines are tokenized and key value

pairs are formed in parallel, only after

this the aggregation/ reducer would

start its operation.

III WORD COUNT PROBLEM WITH

MAP REDUCES.

The word count operation takes place in two

stages a mapper phase and a reducer phase. In

mapper phase first the test is tokenized into

words then we form a key value pair with these

words where the key being the word itself and

value ‘1’. For example consider the

sentence“tringtring the phone rings”

In map phase the sentence would be split as

words and form the initial key value pair as

<tring,1>

<tring,1>

<the,1>

<phone,1>

<rings,1>

In the reduce phase the keys are grouped

together and the values for similar keys are

added. So here there are only one pair of

similar keys ‘tring’ the values for these keys

would be added so the out put key value pairs

would be

<tring,2>

<the,1>

<phone,1>

<rings,1>

This would give the number of occurrence of

each word in the input. Thus reduce forms an

aggregation phase for keys.

Algorithm for Word Count using Map-

Reduce
Mapper<LongWritable,Text,Text,IntWritable>

{

private static final IntWritable one = new

IntWritable(1);

private Text word = new Text();

public static void map(LongWritable key, Text

value, OutputCollector<Text,IntWritable>

output, Reporter reporter) throws IOException

{

 String line = value.toString();

StringTokenizer = new StringTokenizer(line);

while(tokenizer.hasNext()) {

word.set(tokenizer.nextToken());

output.collect(word,one);

 }

 }

 }

VI. RESULT ANALYSIS

Existing and proposed system implemented on

Ubuntu 14.10 Server edition. First install and

configure jdk1.8 on machine. After that install

Hadoop 2.7 and configure it. NetBeans 8.0

used as editor and creates Graphical User

 International Journal for Rapid Research in Engineering Technology & Applied Science

 Vol.4 Issue 3 March 2018

 ISSN (Online): 2455-4723

Paper ID: 2018/IJRRETAS/3/2018/37621

Interface for project. Compare existing and

proposed on the basis of computation time.

Below figures show GUI and comparison

between both systems.

Figure 2. Word Count problem using Simple Java Code

Figure 3. Word Count problem using Map Reduce

Figure 4. Computation time chart for existing & proposed

V. CONCLUSION

Map-Reduce, proposed in this paper provides

an online, on-demand and closed-loop solution

to managing these faults. The control loop in

word count mitigates performance penalties

through early detection of anomalous

conditions on slave nodes. Anomaly detection

is performed through a novel sparse-coding

based method that achieves high true positive

and true negative rates and can be trained

using only normal class (or anomaly-free) data.

The local, decentralized nature of the sparse-

coding models ensures minimal computational

overhead and enables usage in both

homogeneous and heterogeneous Map-Reduce

environments.

VI. REFERENCES

[1] Samneet Singh and Yan Liu,“A Cloud

Service Architecture for Analyzing Big

Monitoring Data”,ISSNll1007-

0214ll05/10llpp55-70 Volume 21, Number 1,

February 2016

[2] JOSEPH A. ISSA, “Performance

Evaluation and Estimation Model Using

Regression Method for Hadoop WordCount”,

Received November 19, 2015, accepted

December 12, 2015, date of publication

December 18, 2015, date of current version

December 29, 2015.

[3] Yaxiong Zhao, Jie Wu, and Cong Liu,

“Dache: A Data Aware Caching for Big-Data

Applications Using the MapReduce

Framework”,ISSNll10070214ll05/10llpp39-50

Volume 19, Number 1, February 2014

[4] Zhuoyao Zhang LudmilaCherkasova,

“Benchmarking Approach for Designing a

MapReduce Performance Model”, ICPE’13,

April 21-24, 2013

[5] NikzadBabaiiRizvandi, Albert Y. Zomaya ,

Ali JavadzadehBoloori, Javid Taheri1, “On

Modeling Dependency between MapReduce

Configuration Parameters and Total Execution

Time”, 2012

[6]Nikzad Babaii Rizvandi, Javid Taheri1,

Reza Moraveji, Albert Y. Zomaya, “On

Modelling and Prediction of Total CPU Usage

for Applications in Map Reduce

 International Journal for Rapid Research in Engineering Technology & Applied Science

 Vol.4 Issue 3 March 2018

 ISSN (Online): 2455-4723

Paper ID: 2018/IJRRETAS/3/2018/37621

Enviornments”, 2011

[7] A. Baratloo, M. Karaul, Z. Kedem, and

P.Wyckoff, ``Charlotte: Meta computing on

theWeb,'' in Proc. 9th Int. Conf. Parallel

Distrib. Comput. Syst., 1996, pp. 1_13.

[8] J. Bent, D. Thain, A. C. Arpaci-Dusseau,

R. H. Arpaci-Dusseau, and M. Livny,

``Explicit control in the batch-aware

distributed _le system,'' in Proc. 1st USENIX

Symp. Netw. Syst. Design Implement. (NSDI),

Mar. 2004, pp. 365_378.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A.

Brewer, and P. Gauthier,``Cluster-based

scalable network services,'' in Proc. 16th

ACMSymp. Oper. Syst. Principles, Saint-

Malo, France, 1997, pp. 78_91.

[10] S. Ghemawat, H. Gobioff, and S.-T.

Leung, ``The Google _le system,'' in Proc. 19th

Symp. Oper. Syst. Principles, New York, NY,

USA, 2003, pp. 29_43.

[11] S. Ibrahim, H. Jin, L. Lu, L. Qi, S.Wu,

and X. Shi, ``Evaluating MapReduce on virtual

machines: The Hadoop case,'' in Proc. Int.

Conf. Cloud Comput., vol. 5931. 2009, pp.

519_528.

[12] J. Issa and S. Figueira, ``Graphics

performance analysis using Amdahl's law:

IEEE/SCS SPECTS,'' in Proc. Int. Symp.

Perform. Eval. Comput. Telecommun. Syst.,

Ottawa, ON, Canada, 2010, pp. 127_232.

